Interference-Aware Radio Resource Management Framework for the 3GPP LTE Uplink with QoS Constraints

Amira Afifi Khaled M. F. Elsayed Ahmed Khattab

Department of Electronics and Communications Engineering
Cairo University, Egypt

ISCC 2013
July 2013
Agenda

- Introduction
- Uplink Scheduling Design Problem and Constraints
- System Model
- Proposed Framework
- Performance Evaluation
- Conclusions
Introduction

- To offer high data rates LTE exploits OFDM technology in the downlink and SC-FDMA in the uplink

- SC-FDMA is a Discrete Fourier Transform (DFT)-spread version of OFDM
 - Low peak to average power ratio (PAPR) saves the constrained power for the User Equipment (UE)
 - Retains the multipath fading resistance of OFDM and the flexibility in sub-carrier allocation

- LTE uses adaptive coding and modulation and power control to enhance uplink performance

- Uplink scheduling is not comprehensively studied due to complexity arising from the many constraints

- Tradeoff exists between PRB allocation and power allocation
Uplink Scheduling Design Problem and Constraints
SC-FDMA Contiguity Constraint
Uplink Scheduling Constraints

- Each Transmission Time Interval (TTI) the following decisions need to be made:
 - Select UEs to transmit in this TTI
 - Allocation of Physical Resource Blocks (PRBs) to each UE
 - Transport format and maximum power for each UE to transmit

- These decisions are subject to the following constraints
 - Contiguous PRB allocation for each UE
 - Respecting QoS requirements
 - Maximizing throughput
 - Minimizing inter-cell interference
Problem Definition

- Time Domain Scheduler
- Frequency Domain Scheduler
 - AMC
 - Power Control

Inputs:
- QoS parameters
- BSR
- PHR
- CQI
- SINR to CQI mapping
- SINR
- SRS

Outputs:
- Tx BW Allocation
- MCS
- TPC Commands
System Model
System model – closed loop power control

\[P_{PUSCH} = \min\{P_{\text{max}}, 10 \cdot \log_{10} M + P_0 + \alpha \cdot PL + \delta_{\text{mcs}} + f(\Delta_i)\} \text{ [dBm]} \]

- \[P_{\text{max}} \] is the maximum allowed transmit power. It depends on the UE power class.
- \[M \] is the number of physical resource blocks (PRB).
- \[P_0 \] is cell/UE specific parameter signaled by radio resource control (RRC). (-81 dBm/Hz)
- \[\alpha \] is the path loss compensation factor. It is a 3-bit cell specific parameter in the range [0 1] signaled by RRC. (0.8)
- \[PL \] is the downlink path loss estimate. It is calculated in the UE based on the reference symbol received power (RSRP).
- \[\delta_{\text{mcs}} \] is cell/UE specific modulation and coding scheme defined in the 3GPP specifications for LTE.
- \[f(\Delta_i) \] is UE specific. \[\Delta_i \] (TPC) is a closed loop correction value and \(f \) is a function that permits to accumulate or use absolute correction value.
System model - Assumptions

- Perfect channel knowledge is assumed with no delay to calculate Channel Quality Indicator (CQI)
- UE transmission power used in interference calculation is obtained from the reports sent by the UE to the eNB
- Assume 4 different QoS classes
- Each user has only one connection
- State of queues at UE is obtained through Buffer Status Reports (BSR) sent by UE to eNB. We assume perfect knowledge of the queues’ status
Traffic Classes

- VoIP
 - Max Delay 100 msec
 - QoS 1
- Interactive Gaming
 - Max Delay 50 msec
 - QoS 2
- Video Streaming
 - Max Delay 300 msec
 - QoS 3
- FTP (Best Effort)
 - Max Delay 300 msec
 - QoS 4
Proposed Framework
Proposed Framework

Priority Assignment

QoS Parameters
- BSR

Time Domain Scheduler

Users' Priorities

Channel Capacity

Schedulable Users

Frequency Domain Scheduler
- Closed loop power control

PRB assignment
- MCS assignment
- Power Control
Proposed Framework

The framework solves the uplink scheduling problem via three main stages.

- **Time domain scheduling**: selects set of users to be served according to their given priority
- **Frequency domain scheduling**: performs PRB allocation, initial power allocation and MCS selection
- **Closed loop fractional power control**
Time Domain Scheduling

\[P_i = V_i(S_i(m)) + \frac{QoS_i}{8} \]

\[V_i(S_i(m)) = \frac{1}{1 + e^{-q_i(S_i(m)-B_i^{\text{max}})}} \]

\[B_i^{\text{max}} = TrafficSourceRate_i \times D_i^{\text{max}} \]

- \(QoS_i \) is the quality of service class
- Division by 8 is done to have the QoS part comparable to the delay part
- \(D_i^{\text{max}} \) is the maximum allowable delay
- \(S_i(m) \) is the queue length of user \(i \) at frame \(m \)
Frequency Domain Scheduling

- PRB group: set of empty contiguous PRBs
- Search for the PRB group or subset thereof that would meet the user’s requested bytes with the least number of PRBs
- Assuming maximum power is used for transmission the appropriate MCS is selected
- Transmission power is then recalculated from MCS and number of assigned PRBs according to closed-loop power control loop while meeting interference limit (next slide).
- More iterations can be done. However, a stable power typically reached using only one.
Closed Loop Fractional Power Control

- Set limit for interference generated by a cell CIL (Cell Interference Limit)
- Map overall CIL to individual UE interference limits
- Approaches to dividing CIL on users
 - Equal weights
 - Low weight – High path loss (Cell Edge)
 - Low weight – Low path loss (Cell Center)

\[IL_i = \frac{CIL \cdot w_i}{\sum_k w_k} \]
Performance Evaluation and Results
System Model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Bandwidth</td>
<td>10MHz</td>
</tr>
<tr>
<td>Channel Model</td>
<td>Winner II C1- Suburban Macrocell</td>
</tr>
<tr>
<td>User Speed</td>
<td>60m/sec</td>
</tr>
<tr>
<td>TTI</td>
<td>1 ms</td>
</tr>
<tr>
<td>Number of OFDM symbols per slot</td>
<td>7</td>
</tr>
<tr>
<td>Noise Power</td>
<td>-160 dBm/Hz</td>
</tr>
<tr>
<td>Rx Noise Figure</td>
<td>5 dBm</td>
</tr>
<tr>
<td>Maximum User Power</td>
<td>24 dBm</td>
</tr>
</tbody>
</table>

- Number of users: 100.
- Four traffic classes: VoIP, FTP, Interactive Gaming, Video Streaming
- Proposed scheme compared to the First Maximum Expansion (FME)
 - Delay
 - Throughput
 - Generated interference.
Performance Evaluation – Delay CDF

![Delay CDF Graph]

- ftp
- voip
- gaming
- video
- ftpFME
- voipFME
- gamingFME
- videoFME

Delay [msec]

19 August 2013
Performance Evaluation – Delay vs Load

![Graph showing delay vs load for FTP and VoIP](image)

- Shows the relationship between FTP load (in Kbps) and the 95% delay in milliseconds.
- FTP and VoIP lines are distinctly marked.

19 August 2013
Performance Evaluation – Cell edge Throughput

- Equal Weights
- Low Weights High Pathloss
- Low Weights Low Pathloss

10 percentile Cell Throughput [Kbps]

Cell Interference Limit [dBm]

19 August 2013
Performance Evaluation – Generated Interference

![Graph showing generated cell interference vs. cell interference limit][1]

[1]: graph.png
Conclusions

- Combining channel dependent scheduling, AMC and power control.
- QoS requirements consideration in the scheduling decision.
- Tradeoff between
 - PRB allocation and power allocation
 - Maximizing throughput and minimizing interference.
- Scheme is capable of achieving QoS differentiation and meeting interference limits.
- Better performance in terms of delay, packet drop ratio, and generated interference with the expense of small decrease in throughput.

- **Future work** includes evaluation in mutli-cell environments.
Questions

khaled@ieee.org